Math.hypot()

Math.hypot() 函数返回所有参数的平方和的平方根,即:

Math.hypot(v1,v2,,vn)=i=1nvi2=v12+v22++vn2\mathtt{\operatorname{Math.hypot}(v_1, v_2, \dots, v_n)} = \sqrt{\sum_{i=1}^n v_i^2} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}

语法

Math.hypot([value1[,value2, ...]]) 

参数

value1, value2, ...
任意个数字。

返回值

将所提供的参数求平方和后开平方根。如果有参数不能转换为数字,则返回 NaN

描述

计算直角三角形的斜边,或复数的幅值时可以使用函数 Math.sqrt(v1*v1 + v2*v2) ,其中 v1 和 v2 是三角形的两个直角边或复数的实部和虚部。如果想计算更多维度,那么只需要在后面添加更多的数的平方就可以了,比如 Math.sqrt(v1*v1 + v2*v2 + v3*v3 + v4*v4)

本函数比 Math.sqrt() 更简单也更快,你只需要调用 Math.hypot(v1, v2) 或 Math.hypot(v1, v2, v3, v4, ...)

它还避免了幅值过大的问题。 JS 中最大的双精度浮点数是 Number.MAX_VALUE = 1.797...e+308。如果你的数字比约 1e154 大,计算其平方值会返回 Infinity,使你的结果出现问题。比如,Math.sqrt(1e200*1e200 + 1e200*1e200) = Infinity。如果你改用 hypot() 函数,你可以得到正确的答案:Math.hypot(1e200, 1e200) = 1.4142...e+200。在数字非常小的时候同样如此,比如 Math.sqrt(1e-200*1e-200 + 1e-200*1e-200) = 0,但 Math.hypot(1e-200, 1e-200) =1.4142...e-200 则是正确的结果。

由于 hypotMath 的静态方法,所以应该以 Math.hypot()的方式使用,而不是作为你创建的 Math 对象的属性(Math 不是一个构造函数)。

如果不传入任何参数, 则返回 +0 .

如果参数列表中有至少一个参数不能被转换为数字,则返回  NaN

如果只传入一个参数,  Math.hypot(x) 等同于 Math.abs(x).

示例

Using Math.hypot()

Math.hypot(3, 4);        // 5
Math.hypot(3, 4, 5);     // 7.0710678118654755
Math.hypot();            // 0
Math.hypot(NaN);         // NaN
Math.hypot(3, 4, 'foo'); // NaN, +'foo' => NaN
Math.hypot(3, 4, '5');   // 7.0710678118654755, +'5' => 5
Math.hypot(-3);          // 3, the same as Math.abs(-3)

向下兼容

此函数可以使用如下代码模拟:

if (!Math.hypot) Math.hypot = function() {
  var y = 0, i = arguments.length;
  while (i--) y += arguments[i] * arguments[i];
  return Math.sqrt(y);
};

另一种避免结果溢出的实现:

if (!Math.hypot) Math.hypot = function (x, y) {
  // https://bugzilla.mozilla.org/show_bug.cgi?id=896264#c28
  var max = 0;
  var s = 0;
  for (var i = 0; i < arguments.length; i += 1) {
    var arg = Math.abs(Number(arguments[i]));
    if (arg > max) {
      s *= (max / arg) * (max / arg);
      max = arg;
    }
    s += arg === 0 && max === 0 ? 0 : (arg / max) * (arg / max);
  }
  return max === 1 / 0 ? 1 / 0 : max * Math.sqrt(s);
};

规范

规范
ECMAScript (ECMA-262)
Math.hypot

浏览器兼容性

Update compatibility data on GitHub
DesktopMobileServer
ChromeEdgeFirefoxInternet ExplorerOperaSafariAndroid webviewChrome for AndroidFirefox for AndroidOpera for AndroidSafari on iOSSamsung InternetNode.js
hypotChrome Full support 38Edge Full support 12Firefox Full support 27IE No support NoOpera Full support 25Safari Full support 8WebView Android Full support 38Chrome Android Full support 38Firefox Android Full support 27Opera Android Full support 25Safari iOS Full support 8Samsung Internet Android Full support 3.0nodejs Full support 0.12

Legend

Full support  
Full support
No support  
No support

相关链接